
Agile Software Development - Scrum, Kanban, Lean, XP, TDD, BDD

Continuous Integration: The Cornerstone of a Great Shop
Articles
Posted by:
Posted on : 2007/10/2 22:35:42

This article shows how continuous integration can help to keep projects on track with a rapid
feedback on the product status.

Author: Jared Richardson, http://www.jaredrichardson.net

I did a lot of lawn mowing when I was younger. My brother and I tried to make our summer money by
asking real estate agents if we could mow the lawns of their absentee clients. We'd usually land
one realtor each year and they'd give us enough business to keep us busy all summer. One of
the things I learned is how hard it is to cut a straight line when you're mowing a wide yard.
When I was in the middle of the yard, I felt like I was cutting a straight line, but then I'd get to
the end of the row and look back to discover a crooked line. It always amazed me how something
could seem so right and be so off course.

Timely Feedback

A software project can be a lot like mowing a yard. Even though we try to move in a straight line, and
we think we are, later we look back and are amazed at how far the project ran off course.

Whether mowing yards or building software, we need timely feedback to help keep us on track.
Looking back at completed software projects, or lawns, shows you where you missed the mark, but
it's usually too late for that project. We need feedback while we're still in the midst of the
work. I never found a good way to get that feedback for my lawn mower, but I have found a guide for
software projects. I use continuous integration systems to keep my projects on track.

Continuous Integration

Mike Clark calls this type of system a "virtual build monitor". This extra team member keeps an eye
on your project and lets you know when things start getting off course. If you invest in a good
automated test suite, you'll quickly catch all sorts of errors that traditionally pull good projects off
course.

The more shops I get to observe, the more I'm seeing that continuous integration plays a vital
role in keeping a shop on course. In fact, these days I'm telling people that I've learned
one of the basic, fundamental principals to keep both you and your project on target.

Do you want to make your product a great one? Do you want to be the best developer you can be?
Then make a solid continuous integration system a first-class member of your team and the
cornerstone of your shop. A good CI system eliminates many of the problems that prevent you from
working on the product, your career and your craft.

http://www.devagile.com 2018/12/18 4:05:42 - 1

http://www.jaredrichardson.net
http://www.devagile.com
mailto:devagile@devagile.com

A continuous integration system does several things automatically.
* Monitors your source code
* Compiles after every change
* Tests your compiled code
* Notifies the developers of problems as soon as they occur

Figure 1. Continuous integration actions
As we move forward, keep an open mind and try to see where each step could’ve helped you
in the last few months. Then, when we’re done, I’m going to point you to a Continuous
Integration system that is trivial to install, easy to use, and open source to boot.

Let's look at what a continuous integration system is and why it helps so much.

The Steps of CI

Continuous integration systems all have a few common steps.

First, CI systems monitor your source code. The system usually watches your source code
management system (CVS, Subversion, Perforce, ClearCase, Visual Source Safe, etc) but most
systems can also monitor other resources, like file systems. This is how the software knows it's
time for a build. Every time your code changes, the CI system checks out the latest version of your
code.

Second, the software compiles your project. The system runs your existing build scripts by wrapping
them in an Ant script. In this step, your CI software is requiring you to have a scripted build. If you
builds are not robust or repeatable, your CI tool will expose this flaw. It will force you to have a clean

http://www.devagile.com 2018/12/18 4:05:42 - 2

http://www.devagile.com
mailto:devagile@devagile.com

build system.

Third, CI systems tests yours new build. The tests are created (or wrapped) in an Xunit framework
(Junit, Nunit, HtmlUnit, jsUnit, etc), which means you have access to dozens of test frameworks that
range from unit testing to browser click through testing. When you set up a system to run tests,
people are more likely to write the tests. They'll also contribute the tests they've been
hiding on their own machines.

Lastly, your CI system will notify everyone of the results. The developers or testers who just changed
the code will get email telling them how long the build and test took, how many tests passed, how
many failed, etc. Your system will also archive the results to a web page.

However, the publishing step is very configurable. You can publish in a variety of interesting ways
beyond a standard web page. You can publish to a custom web page, XML log, email, an instant
messaging client, or even a Lava Lamp. The publish step is an extremely flexible way of sharing your
build results.

What's the big deal?

There are several key practices that continuous integration either requires or encourages. They are
source code management, scripted builds and test automation. Much of the benefit that comes from
using a CI system actually comes from the foundational practices that a CI system requires.

Don’t get me wrong. CI adds plenty of benefit as well. It’s just that many day-to-day
problems go away when you use these other practices first.

Code Management

One of the first things your CI system will do for you is make sure you've got your source code
organized and (hopefully) into a source code management system. After all, your CI software
can't watch a code tree you can't identify. The first practice CI encourages is good source
code management.

This benefit will seem very elementary to many people, but I've seen shops that still use
network drives and zip files. Quite a few developers still haven't discovered source code
management.

Proper source code management doesn't take much time at all once you've learned how
to use it. Like any good tool, you’ll save much more time than you’ll spend learning to
be effective with the tool.

You’ll save the time you normally spend reconciling code differences by hand, not to mention
rewriting the work that careless coworkers overwrite from time to time. Code collisions and lost work
are common issues but a good source code system also merges your changes for you, maintains a
history for each file, and more.

If you're not using a proper source code management system, I urge you to rethink you

http://www.devagile.com 2018/12/18 4:05:42 - 3

http://www.devagile.com
mailto:devagile@devagile.com

position. It's a huge time saver.

A Scripted Build

The second thing your CI system will require is a scripted build. Moving to this step requires a level of
build automation. Fortunately, this is easy to add. There are many tools available, both commercial
and open source, that solve this problem for you. You still have to understand how to build your
product, but these tools will keep from learning the different command line options for javac or jar on
different operating systems. Look at tools like Ant, Maven, and Rake.

Like good source code management, a scripted build provides many benefits.

For starters, your teammates aren't all busy building their own version of the build script.
Everyone needs to build and developers, being clever, will all find a slightly different way to solve the
same problem. When you have a single build script, everyone's building the same way.
It's okay is someone still wants to build differently (an IDE maybe?), but they need to have the
ability to build the same way that everyone else does.

Don’t ignore the maintenance savings either. You'll eventually improve the build script,
find a bug in it, or decide to make it faster. With a single script, you do the work once time. When
everyone has his or her own build method, everyone solves the same problem repeatedly. What a
waste of time!

When you build your code the same way, everyone gets the same version of the product. This
means that the testers report problems in the same version of the program the developers run.

Without a canonical build script, you don't always get everyone on the same page. In fact, the
customers, testers and developers often run very different versions of the same product and then
wonder why they can’t reproduce the same issues. If you’ve had trouble reproducing
your customer’s bugs, then start here. Is everyone running the same version of the product?

Test Automation

Another practice that a CI system encourages is test automation. Writing and running tests is a huge
milestone for many shops and is one of the hallmarks of a great shop. I think test automation is the
core of why a CI system adds such benefit. People who recognize the benefit of automating common
tasks tend to be more strategic thinkers. They automate everything possible, including building and
testing, and it frees them up for more interesting work. (Of course, this doesn’t eliminate
manual testing, but that’s another topic.)

What is an automated test?
* Binary
* Automatic
* Repeatable
* Binary

A test with a binary result passes or fails unambiguously. There’s no question about whether

http://www.devagile.com 2018/12/18 4:05:42 - 4

http://www.devagile.com
mailto:devagile@devagile.com

the test succeeded. Sometimes a test will return a result that requires a judgment call from a tester.
The odds are good that you don’t need this.

Work hard to make your tests clean and binary. Write them so they evaluate the result and tell you if
it passed or failed.

Automatic

If the test isn't automatic then someone has to set up an environment, start the test, click a
button, or look at the results. When this happens, the test becomes interactive again. Much of the
benefit of test automation is lost.

You've created a hybrid test somewhere between an interactive test and an automatic test.
Instead of letting a small number of testers baby-sit a large number of tests and continually adding
more tests, you'll have a large number of testers looking at log files all day long. Half-automated
tests are certainly better than pure interactive testing but they fall far short of where you can be. Work
hard to make your tests completely automatic, including the determination of the pass or fail status.

Repeatable

An automated test also needs to be repeatable. A good test doesn't give you different results
for three out of five test runs. If your tests aren't repeatable, break the tests down into smaller
tests. Eventually you'll isolate the problem area and as a bonus, you’ll have new tests
created for your test suite.

Don't forget about external dependencies either. You can rebuild and restock database tables
cleanly before each test run with tools like Ant's SQL task or dbUnit (
http://dbunit.sourceforge.net). A dirty database table can introduce all sorts of variation into a test
run. (You may want to create a small but representative data set to load for your testing runs.)

Leverage Yourself

An automated test is a great way to leverage your experience and expertise. As an expert on your
product, you probably know how to test parts of it in a way that few other people can. You can
encode that knowledge in a reusable format by creating an automated test. This makes your
experience available without diverting your attention. Sometimes a co-worker will run the tests, other
times you will. In other cases, a program will run them.

Let these bits of your expertise exercise the product while you do other things, like go home on time,
or stay late and solve problems that are more interesting. These tests might run while you are coding
or at home sleeping, but you are doing something else. Your tests are working in the background.

Getting Started

Sometimes people won’t install a CI system because they don't have tests ready to run
in the system. There are enough benefits from fast compile cycles to justify using Continuous
Integration, so don’t wait. You don’t wait to see a doctor until you’re not sick

http://www.devagile.com 2018/12/18 4:05:42 - 5

http://dbunit.sourceforge.net
http://www.devagile.com
mailto:devagile@devagile.com

anymore, right? Having the CI system keep your compiles clean will free up some of the time needed
to start writing tests as well.

I've also found that people are much more likely to write automated tests if they’re sure
the tests will be used. By providing a CI system, you have a place to house your tests and run them
immediately. This is the best way I know to encourage test creation. People want to create things are
used and this assures them the tests they create will run regularly.

The best way to get started with Continuous Integration is to start using an existing software
package. I'm going to point you to CruiseControl on Source Forge (http://cruisecontrol.sf.net/).
Since version 2.3 Cruise Control comes with an embedded servlet engine (Jetty-
http://jetty.mortbay.com) and a sample project. You can download the project and see CC running in
less than five minutes. Then, to add your own project, just copy the bundled example. It’s very
easy to get started.

The CC team has a great write-up on how to run the binary release of CruiseControl. Visit
http://cruisecontrol.sf.net/ and click the "Getting Started" link on the left.

In Conclusion

The teams I know running smoothly and cleanly always have continuous integration in place.
It's a practice I respect more everyday.

I’m seeing this practice overshadow all others. Teams that run smoothly use continuous
integration. They respect the system instead of tolerating it, and the developers treat the notifications
seriously. When the system says something is broken, these teams address the problem quickly.
These teams insist on CI coverage from the first day of a new product.

Other shops, even those who are using a CI system but ignoring it, are very different. They live in
turmoil. Heroic efforts are not the exception but the rule. In fact, these teams always seem to be
running behind. They always have a crisis issue to resolve or deadline to meet.

They work and live in a perpetual twilight of stress and problems. They’ve lived there so long
that they think it’s the only way to write software. Sadly, these teams tend to burn people out.
I’ve been there and it’s no fun. Creating software can be a great joy -and is- when
done right. CI can’t solve every problem, but it can remove several categories of problems
that would otherwise clutter your day and slow you down.

If you’re not using a Continuous Integration system, try one out this week. Get a system
installed and leave it running for one month. At the end of that month, turn it off if you don’t
see the benefit.

Don’t be surprised if you find yourself missing the system the first day it’s gone. You
might just become one of the developers who insists on continuous integration coverage on your new
projects.

Resources
Martin Fowler and Matthew Foemmel on Continuous Integration
http://martinfowler.com/articles/continuousIntegration.html

http://www.devagile.com 2018/12/18 4:05:42 - 6

http://cruisecontrol.sf.net/
http://jetty.mortbay.com
http://cruisecontrol.sf.net/
http://martinfowler.com/articles/continuousIntegration.html
http://www.devagile.com
mailto:devagile@devagile.com

CruiseControl page http://cruisecontrol.sourceforge.net/
CI product page: http://www.jaredrichardson.net/ci.html
Scripted build links: http://www.jaredrichardson.net/buildscripts.html
Mike Clark’s automation blog: http://www.pragmaticautomation.com
Jetty http://jetty.mortbay.com/ Originally published in the Spring 2006 issue of Methods & Tools

http://www.devagile.com 2018/12/18 4:05:42 - 7

http://cruisecontrol.sourceforge.net/
http://www.jaredrichardson.net/ci.html
http://www.jaredrichardson.net/buildscripts.html
http://www.pragmaticautomation.com
http://jetty.mortbay.com/
http://www.methodsandtools.com/mt/download.php?spring06
http://www.devagile.com
mailto:devagile@devagile.com

